
A simple metadata ontology (and how it could evolve)
Chris Patton, 31 May 2013

To start off, I think it would be useful to describe our project as I understand it. Our goal is to
create a crowd-sourced, open platform ontology for metadata which could be applicable to just
about any field or subject matter (intellectual property in general). The key innovation is that the
set of terms and their relationships will evolve to peoples' needs in a social ecosystem. We will
provide a service that (a) allows users to input metadata with all required terms (according to our
ontology) and export it in some controlled format (e.g. XML), and (b) to propose new terms
when they're needed. Stable ontological terms will emerge in two ways:

(1) Vernacular: users propose new terms and definitions for those terms. These will be
discussed and voted on in the stack overflow manner.

(2) Canonical: we should allow an expert to declare a term in the ontology.

As the ontology will be entirely user-driven, there are a number of pathologies that could
develop. Redundancy: two terms exist in the ontology with the same semantic meaning.
Irrelevance: a particular term is not applicable to the particular subject matter, but is required by
the ontology. [Examples would be good.] What is needed is a way of controlling the evolution of
the ontology in an automated way. In this document, I propose simple semantics that helps to
avoid these issues and maintain a sound ontology as the registry evolves. Part of my approach
prescribes how new terms are proposed.

First, here's the essential specification of what our system should accomplish. From now on,
term is meant to describe classes of metadata, e.g. Type, Format, Creator, etc. Instance will be
used for particular values described by a term—e.g., JPEG, plain_text, or PDF are instances of
Format. We want a function, call it ExportMetadata() returns a set of only those (term, instance)
pairs that pertain to the subject matter of the users data, according to our ontology. Part of this
interface is a way to propose new terms in a systematic way.

MetadataExporter
I start off by describing the front end user experience. (For now, this will be a simple console-
based Python driver program. I imagine it's possible to make this beautiful on the web.)
Essentially, the goal is to unite the process of getting metadata and proposing new metadata
terms into the same interface. The user inputs relevant metadata terms and the program outputs
the responses formatted in a standard way, such as XML. The user is first prompted for basic
terms such as Name, Creator, Subject, Publisher, Contributor(s), Date, Language, Rights, etc1. At
this point, we could generate a unique identifier (Id) with EZID. These are terms with simple
domains; terms with more complex meanings require a richer ontology. When the user is
prompted for Type, for example, he or she is given a list of possible types, e.g.: document, table,
video, audio, image, etc. Particular types often have attributes that are only relevant to them. For
example, Dimension is relevant to an image, but not to a document. The program proceeds such
that the user is only prompted for metadata features relevant to his or her data/document/etc.

1 These terms and their meanings come from the Dublin-core RFC.

To continue, let's look at some use cases. Alice is a botanist. Say Alice wants to export
metadata for her dataset about grapes. Her table has three properties: time, temperature, and the
expression level of the protein she's studying. She types in the Name, Creator, Publisher,
Contributor(s), Date, and Rights and is ready to specify the Type. We'll call the possible values
for non-primitive terms instances of that term. The program gives her the following instances of
Type:

document,
table,
video,
audio,
image, or
[propose new instance]

Let's say Alice is new to our system wants to propose the “dataset” as a new Type. This
initiates a debate in the stackoverflow manner about the meaning of dataset. Alice insists that a
dataset is a fundamental type. Finally, someone persuades her that, in fact, her grapes are more
generically a table. Alice agrees and chooses table from the above list.

In addition to possible values for terms, the program also provides a list of terms relevant
only to that term. After Alice chooses table, the program provides no additional options and is
ready to export the metadata. However, Alice believes her metadata could be enriched by
including the table's dimension (hers is 3-dimensional). She can now propose Dimension as a
new term relevant to the table Type. The program tells her that Dimension already exists as a
term for the image Type. She believes that the semantics are the same for the dimension of tables
and images, so she goes ahead and proposes the new term. This initializes another debate, and
the consensus is that Dimension is also relevant for tables. After some the vernacular term
stabilizes, it is added to the core ontology by an expert user.

Alice successfully added a term and her confidence (and reputation) has gone up a notch.
Next, she decides that the term Organization is not captured by the ontology. She proposes this
new term, which initializes yet another debate. This time, Dave the curator reminds her that
Organization is semantically prescribed by the Creator term, and would therefore introduce a
redundancy. Alice sees the light and the thread closes.

To conclude, Alice has proposed three modifications to the metadata ontology:
(1) instance “dataset” of term Type,
(2) term Dimension of instance “table”, and
(3) term Organization of term Base2.

As far as I can conclude as of this writing, these are the three basic changes that may be
proposed. The next section describes the semantics of an ontology that would allow our system
to capture all of these.

2 Terms have a hierarchal structure with Base as the root. This architecture is described in detail in the next
section.

Term domains and semantics
The ontology is comprised of a pool of terms, instances (types) of those terms, and relations
between them. There are a number of primitives with simple domains. We won't worry about the
mechanics of these domains too much, but here they are:

– String
– Int : integer greater or equal to 0, the natural numbers
– Time : Representation of date/time with arbitrary precision

Dublin-core prescribes the following (likely) primitives:
– Name of type String,
– Creator of type String,
– Description of type String,
– Publisher of type String (potentially non-primitive),
– Contributors of type String list
– Subject of type String,
– Language of type String,
– Date of type Time,
– Rights of type String, and
– Id of type String (necessarily unique).

There are seven more terms in the set which we'll consider to be non-primitive for our purposes.
These are:

– Type,
– Format,
– Source,
– Relation, and
– Coverage.

Each term has an instance set: e.g. Type = {document, table, video, image, audio, … }, Format =
{PDF, XML, plain_text, JPEG, mp3, … }, Name is a subset of all strings, Id is a subset of unique
strings. It's also possible to leave terms unspecified. In this case, we'll call it nil. Therefore each
instance set is the union of {nil} and all possible instances.

The ontology is organized in a hierarchy, the root of which is the term Base. This is analogous to
class hierarchies in object oriented programming, except that instances of our terms can have
attributes unique to that instance. There are three possible relationships:

(1) Term A → instance a : a is a type of A, e.g. Format → JPEG.
(2) Term A → Term B : B is a characteristic of A, e.g. Base → Format.
(3) Instance a of A→ Term B : B is a characteristic of the particular instance a of A.
(4) instance a → instance b : this relationship is excluded, as it's not sensible.

I claim that this specification precisely defines all possible ontological relationships between
metadata terms. If this is the case, then all possible changes to the ontology (through some
crowd-sourcing mechanism) are well-defined. This makes it possible for us to control the
evolution of the ontology in a systematic manner.

Architecture
In addition, this semantics gives us a specification for the software system.

– A Term is a metadata term and its corresponding instance set. If it's a primitive, its type is
noted and the instance set is empty. A term also includes a definition.

– An Instance is an instance (type) of a term paired with a reference to its Term.

– The TermPool contains the set of all Terms (dictionary in Python, hash table in C).

– The InstancePool contains the set of all Instances.

– Ontology is a graph representation of term-term, term-instance, and instance-term
relations. The graph is rooted—it's not always a tree, but I do believe it's a DAG (not
important)—at the term Base. Base has some primitive attribute terms, such as Name,
Creator, Date, etc.

To export metadata (standard query), we simply traverse the Ontology graph breadth-first starting
at Base. First, for primitives terms, we input the correct value. For non-primitives, we either
select an instance from the instance set or propose a new instance. At the same time, it should be
possible to propose any new term for a given instance or term. Finally, for ExportMetadata(A),
for all terms B such that A → B is a relation in Ontology, do ExportMetadata(B).

Automatic redundancy resolution via NLP
A stated ambition of this project is to use NLP techniques to analyze definitions of proposed
terms. The proposed ontology semantics allows to resolve the relationships between terms in
order to determine computationally if there is a collision. Of course, I don't think there's anyway
to do this without human input, but it provides a way to flag obvious redundancies.

Let's think about Alice as an example. You may recall that she proposed Base →
Organization. Let's say her proposed definition was: “entity or group for which the material was
prepared”. Say the definition for the term Creator is “person, group, or entity for which the
material was prepared”. Creator is more general than Organization (this is a trivial case in NLP),
and both are at the hierarchal level. Organization is therefore an obvious redundancy.

